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I. INTRODUCTION

During the period covered by this Technical Report, qons’ide.ralble advances have
been made in many areas of research under the‘gencral title of “Mechanics in Material
Space”. These advances are reported under three main headings.

Under the heading of “Conservation laws obtained using Noether’s First
Theorem”, results for the various ndn-homogcneous systems considered are obtained via
Noether's first theorem[1], combincd with Lie’s group theor);[2]. The essence 'of this
approach is as outlined in Seétion 3 of the proposal that lead to Grant No. 90-0195. This |
‘methodology for constructing consevrvation laws is applicable only to Lagrangian systems,
and we had applied it to four different Lagrangian systems under the sub-headings of plane
elastostatics, bars, beams and plates. » |

Under the heading of “Conservation laws obtained using Neutral Action Method”,
results for thcﬁarious dissipative systems, as well as for one Lagrangian system, are
obtained via the Neutral Action method. This new methodology for the construction of
conservation laws has been established thh the support from Grant No. 90-0195, and this
achievement has been reported in Section 7 of the prdgress report submitted for the period
April 1, 1990 through March 31, 1991. Details on this new methodology, which is
applicable to dissipative as well &s to Lagrangian systems, can be found in the published
brief note[3] attach(l as an Appendix. Using the Neutral Action method, results obtained
are reported under five sub-headings: linear viscoeiasticity. non-homogeneous beams,
systems under initial stress, Sezawa bcam and fluid mechanics.

Under the heading of “Results on General Theory”, the results presented dealt with
the comyrison of the two methodologies for constructing conservation laws, Noether’s
first .thcorcm and the Neutral Action method. The connection between the Neutral Action
method and the symmetries of the governing equations for any system of interest was also

established.
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Until the discovery of the Neutral Action method, there existed no systematic

procedure for constructing conservation laws valid for dissipative systems. Since
conservation laws are of great value in the analysis of fracture and defects in these systems,

most of our efforts during this reporting year have been concentrated in developing

conservation laws for dissipative systems using this new methodology. Results in this area

are presented in Section II1. _

Results presented in Section II and Section IV are follow-ups on the results
reported in the progress report for 1990-1991. Any advances in the areas cdvered within
these sections, as well as the current status of the relevant manuscripts are described in
these sec i-s.

During the reporting period a Ph.D. dissertation was completed under the title,
"ConScrvation laws in noh-homogeneous and dissipative systems" by Nelly Y. Chien,

who graduated in June 1992.

II. CONSERVATION LAWS OBTAINED USING
' NOETHER’S FIRST THEOREM

1) Conservation laws {(and path-independent integrals) in non-
- homogeneous plane elastostatics ’

As mentioned in the last progress report, previous research by Es.helby[4],'
Sanders[5], Rice[6], Giinther{7], Knowles and Sternberg[8] relating to path-independent
integrals (J, L and M) plays a prominent role in the study of fracture mechanics of
homogeneous elastic bodies.

The aforementioned studies are applicable only to homogeneous elastic bodies, in
order to analyze fracture and defec.ts in non-homogeneous bodies with continuously
varying elastic properties, our study has concentrated in developing conservation laws in

such non-homogeneous materials. Results obtained can be applied to a novel advanced

-3-
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material called functionally gradient material FGM)[9]. These materials are expcctéd to be

used in light-weight structures such as aircraft and to solve problems in the thermal-
protection systems of aerospace vehicles.

Our mathematical apparatus, used in constructing conservation laws for elastic
bodies with continuously varying material propérties, reliéd on Noether’s first theorem
combined with Lie’s group theory. Using a novel application of this apparatus, we
managed to relate the condition of the invariance of the Lagrangian in Nocther’s theorem io
a condition relating the elastic moduli. In particular, we extended the classical J-integral to
* materials for which Poisson’s rati§ is constant, while the Young’s modulus varies
exponentially or as a power law. This J-in.te gral is path-in_dependent and characterizes thc.
crack propagation in such materials.

However, we would like to point out that our work has not been exhaustive, since
| we restricted it to the so-called geometric symmetries. It is expected ihat by including
generalized symmetries the cfass of non-homogeneous materials, for which we can derive
conservation laws, will be enlarged. | |

A ‘manuscript [M1]’ covering this work has been wﬁtten up during the reporting

period and will be submitted to an appropriate journal for publication.

2) Conservatio’n laws for non-homogeneous bars . . . .

-As mentioned in the last progress report, using Noether’s first theorem combined
with Lie’s group theory, conservation laws were obtained for smoothly non-homogeneous
bars. The non-homogeneity can be due to variable cross-s=ction or to bacs formed from

non-homogeneous materials. These conservation laws will prove useful in studying

* Numbers in bracket preceded by letter M refer to the list of manuscripts at the end of this report.
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concentrated defects, such as jump discontinuities and cracks in smoothly non-

homogeneous bars.
A manuscript [M2] covering this work has been written up during this reporting

period and has been accepted for publication in Acta Mechanica.

3) Conservation laws for non-homogeneous beams

As mentioned in the last progress report, conservation laws for smoothly non-
hemogeneous Bemoulli-Euler beams as well as Timoshenko beams, has been established
based on Noether’s first theorem combined with Lie’s group theory. The two beam
theories differ in that the Timoshenko’s theory of flexural motions in an elastic beam takes
rotatory inertia and transverse-shear deforma;ion into account and contains two ihdependent
variables instead of the one transverse displacement of the Bernoulli-Euler theofy. Both
statics and dynamics of these beam theories are considered in the derivation of conservation
laws.

Conservation laws are found to exist only for special classes of non-homogeneous
beams. These admissible non-homogeneities are expressible in the form a differential
equation. Given any non-homogeneity of a beam, one only needs to introduce the material

dependence into the differential equation to determine the conservation laws applicable, if

As previously reported, a total of six conservation laws are found for the static of a
Bernoulli-Euler beam, and a total of eight for the dynamics of a Bernoulli-Euler bearn.
These laws are obtained assuming that the beam is loaded only at its end.

During this reporting period, conservation laws are obtained for the statics and

dynamics of a non-homogeneous Bernoulli-Euler beam under a continuously distributed

loading. As the non-homogeneities of a beam admitting conservation laws are expressible

in the form of a differential equation, the distributed loading on a beam that admits
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conservation laws is also found to be expressible in the form of a differential equation. A

total t)f two conservation laws are obtained for the static case, and - total of four for the
dynamic case.

For the nqn-hon'_ogencous Timoshenko beam, it has been noted in the last progress
report that four conservation laws have been obtained for the static case, and six for the
dynamic case. During this reportmg period, two more conservation laws were obtamcd for
the static case, and one additional for the dynamic case. Also, the class of non-
homogeneities admitting conservation laws has been enlarged.

However, we would like to point out that our work completed to date has not been
exhaustive, since we restricted it also to the so-called gcometric symmetries. It is expected
that by including generalized symmetries more conservation laws will be obtained,_and the
class of non—homttgencous beams admitting conservation laws will also be enlarged.

A manuscripi [M3] covering these results has been accepted for publication in the

Intemanonal Journal of Sohds and Structures.

4) Conservation laws for non-homogeneous plates

- As mentioned in the last progress report, conservation laws were obtained for
smoothly non-homogeneous Mindlin plate using Noether’s first theorem combined with
Ltcms group theory Mindlin’s ;;iaté bpndmn theory is one that includes the effects of
transverse-shear deformation and rotatory inertia. As in the case for non-homogeneous
beams; the non-homogeneity of the plate admitting conservation laws is expressible in the
form of a set of differential equations. Given any non-homogeneity of the plate, and using
this set of differential equations, the applicable conservation laws, if any, can be readily
determined.

It has been noted in the last progress report that a total of four conservation laws are

found for the statics of a Mindlin plate, and a total of six for the dynamics. During this




reporting period, two additional conservation laws were obtained for the static case and an

"additional lhreé were obtained for the dynamics. Also, the class of non-homogeneous
plates admitting chnservation laws has been enlarged. These laws are obtained assuminé
that the beam is loaded only at its ends. |

Conservation laws were also obtained for the statics and dynamics of a non-
homogeneous Mindlin plate under a continuous distributed loading during this reporting
period. Similar to case of a Bernoulli-Euler béam with loading, the distributcd loading on a
plate is also found to be expressible in the form of a differential equation. A total of six
conservation laws were obtained for the statics caée and a total of four for dynamics.

Also established during the reporting period were some analogues of the
conservation laws relating to the J, L and M integrals in elasticity. These conservation laws
expressed in the form of path-independent integrals are obtained for the statics of a Mindlin
plate with and without distributed loading. For dynamicsy with and without loading, the
corresponding conservation laws are expressible as balance laws, where path-integrals are
balanced by the rate of change of volume integrals. These results are applicable in the
analysis of fracture and defects of non-homogeneous plates similar to the J,L and M
integral in elasticity.

However, we would like to point out that our work completed to date has not been
exhaustive, since we restricted it again to the so-called geometric symmetries. It is expected
that by including generalized symmetries more conservation laws will be cbtained, and the
class of non-homogeneous plates admitting conservation laws will also be enlarged.

A manuscript [M4] covering these results has been written up during this reporting

period and will be submitted to an appropriate journal for publication in the near future.

|
I




III. CONSERVATION LAWS OBTAINED USING THE
NEUTRAL ACTION METHOD

1) Conservation laws in linear viscoelasticity

As mentioned in the last progress report, conservation laws were obtained for one-
and two-dimensional linear viscoelasticity (Voigt model) using the Neut-al Acticn method.

A conservation law for the one-dimensiunal case reported previously, is that whose
time current can be any function of the total stress and the space current is the negative
derivative of this function times some derivative of the displacement. If one chooses the
unknown function as proportional to the stress squared, one can obtain the results that
shows that the dissipation of .he elastic stress is being equal to the rate of work done due to
tractions minus the energy dissipation.

In addition to the conservation law mentioned above, two additional ccnservation
laws valid for one-dimensional linear viscoelasticity were obtained during this repoﬁing
pe‘riod. One of these laws is quite trivial in that it expresses the fact that any function of the
constant stress is also a conserved quantity. The other conservation law expresses a relation
between ctress, displacement and velocity that can be obtained by integrating the
constitutive equation of the syster. while taking into account the equilibrium equation.

For the two-dimensional problem, a conservation law that relates the dissipation of

elastic energy similar to that in the one-dimensional case was previously obtained only for

two special cases, namely, a special pure dilatation case and a second case without the
dilatation terms. However, during this reporting period, such a law for the complete
problem was finally obtained.

In addition to the conservation laws which describe the dissipation of energy, a
conservaticn léw without a time current is also available for two-dimensional linear

viscoelasticity as reported previously. Without a time current, this law provides a path-




independent integral that might be useful in the analysis of cracks «-.d other defects in linear
viscoelastic bodies.

However, we vould like to point out again that our work completed to date has not |
been exhaustive. By allowing the characteristic of conservation law in the Neutral Action
method to depend on more and higher order derivatives of the dependent variables of the
system, more conservation laws should be obtainable. |

A manuscript [M5] covering these results has been -vritten up during this reporting
period and accepted for publication in ZAMP. A marked proof of this paper is attached in
the Appendix. |

2) Conservation laws for non-homogeLeous beams

|
During this reporting period, conservatiorn laws were obtained for the statics and
dynamics of non-homogeneous Bemoulli-Eulet1 beam‘s, with and without a distribuzed |
loading using the Neutral Action method.
Since the basic building bloc. for constru'ttion of conservation laws by the Neutral

Action method are the governing equations of the system of interest, this method is

applicable to dissipative systems without a Lagrangian function as well as to Lagrangian

systems governed by the associated Euler-Lagrange equations.

Even though the problem of non-homogeneous Bernoulli-Euler beams has been
treated previously based on Noether’s first theorem combined with Lie’s group theory
limited to geometric symmetries, in order to compare the two inethodologies for
construéting conservation laws, we applied the Neutral Action method to the same system.

The resulting conservation Iz ws by the Neutral Action method are shown to not
only encompass all previous results derived for the same system using Noether's first
theorem combined with Lie’s group theory utilizing geometric symmetries, but they are

also more numerous and are applicable to a wider range of non-homogeneities and loading.

-9-




A total of eleven conservation laws are obtained for the static case with and without

' loading, and a total of fourteen for the dynamic case with and without loading.

The fact tha: conservation laws deriv=d by the Neutral Action method cncémpass all
previous results obtained using .Noether"s first theorem combined with Lie’s group theory
limited to geometric symmetries, is consistent with the comparison between the two
methodologies. It has been noted in Section IX 6f the last progress report that, for
Lagrar.gian systems, the requirement for existence of conservation laws by the NA method
and by Noether's first theorem are mathematicélly identical. However, as this comparison
is based on the general form of Noether's first theorem admitting an extension by Bessel-
Hagen[10] (divergence symmetries), it is expected that the cénservation laws obtained here
for non-homogeneous Bernoulli-Euler beams using the NA method to be more generai and
to encompass all previous results reported in Section III-3.

Also, for a conservation law obtained, the Neutral Action method of constructing
coaservation laws is shown to be more efficient than the vclassical‘ method of Noether’s first
theorem with its extension by Bessel-Hagen. While the condition for existence of
conservation laws by the classical methods requires the use of three unknown functions,
the Neutral Action method uses only one Iunknown function to arrive at the same
conservation law.

However, we would like to point out that our work completed to date has not been
exhaustive. By again allowing the characteristic of conservation law in the Neutral Action
method to depend on more and higher order derivatives of the dependem variables of the
system, more conservation laws will be obtained, and the class of non-homogeneous
beamns admitting conservation laws will also be enlarged.

A manuscﬁpt [M3] covering these results has been written up and will be published

in the International Journal of Solids and Structures.

<10 -




3) Conser 1 laws for systems under initial stress

During this reporting period, conservation laws were sought using the Neutral
Action method for linear elastic systems under initial stress. Since structural components
are frequently presfressed or exhibit some distribution.of residual stresses, a conservation
law that relates to the energy release rate will be‘e'xtremel'y useful in the analj'sis of fracture
and defects for such components. |

Up until the present, no conservation iaw was yet derived. The difﬁcul;ies lie in the
generality of the system at hand (the initial stress state being unspecified) and the
deterrhination of the characteristic functions for conscrvation laws which must satisfy
approximately twenty partizi differential equations simulianeously. Ncvertheless, it is
éxpected that results will be obtained in the near future for some special cases such as

systems under hydrostatic or uniaxial stress.

4) Conservation laws for Serawa Beam

During this reporting period, conservation laws for the Sezawa Beam were derived
using the Neutral Action method. This beam theory is a modification of the Bemoulli-Euler
bea:nvthcory which incorporates the effects of internal damping. Results obfained indicated
that conservation laws for this system exist only in physical space. As no conservation
laws were found in materials space, a balance law that relates to the energy release rate is

unavailable.

5) Conservation laws for fluid mechanics

During this reporting period, conservation laws were derived using the Neutral
Action method for 2-dimensional Navier-Stokes equations for an incompressible fluid with

constant fluid density, constant viscosity and in the absence of body forces. Results

-11-




obtained will be most useful in the numerical anaiysis of the system, as well as in providing

bir.sights into the behavior of the fluid, both mathematically and physically. ’

Result obtained sc far are still limited. In the genéral cuse, a total of four
conservation laws were obfaincd. These laws do not contain energy terms and they relate
" only to the incompressibility of the system. Also, conservation laws were obtained for
cases with Spccial pressure fields, such as linear fields and fields which satisfy the Laplaéc
equation. The conservation laws in these special cases show a balance of displacement
vgradiems, pressure gradienté and strain rates. The physical interpretation of these laws is
yct‘ to be investigated. The search for conservation laws in this area is far from complete.
Efforts will be undertaken to obtain additional conservatiL)n laws and to interpret their

physical significance, hopefully on the level of energies.

IV. RESULTS ON GENERAL Jh'.lE:ORY
Conservation laws and symmetries

|

As reported in the last progress report, the Neutral llction mcthod for constructing

conservation laws has a relation to the concept of symmetrﬁcs. For each characteristic of a

’cxists in the adjoint field a

conservation law by the Neutral Action method, there
corresponding charac;cristic for the symmetries of the gove_mihg equations for the system
of interest. However, the converse is not true. |

Also mentioned in the last progress report is that the Neutral Action method of
constructing conservation laws, when applied to Lagrangian systems, is identical to the
method by Noether’s first theorem with Bessel-Hagen's extension. The conditions for
existence of conservation laws of both methodologies can be transformed into identical
form.

During this reporting périod. it has been further shown that, within,Lagrangian

systems, both conservation laws Jderived by the Neutral Action method and by Noether’s

first theorem with Bessel-Hagen's extension have a one-to-one correspondence to the

-12-




variational symmetries of the Lagrangian functional. This is an additional supporting fact

for the equivalence of both methods when applied to Lagrangian systems.
A manuscript [M6] covering these results has been written up and submitted to an

appropriate journal for publication.

-13-




10.

e A

‘References

E. Noether, “Invariante Variationsprobleme”, Nachr. Kénig. Gessel. Wissen.
Gartingen, Math.-Phys. K1., pp. 235-257, 1918 (See Transport Theory and Stat.
Phys. 1, pp. 186-207 for an English translation.) ,

P.J. Olver, Applications of Lie Groups to Differential Equanons, Springer, New
York, 1986. - , ,

Honein, T., Chien, N., and Herrmann, G., “On Conservation Laws of Dissipative
Systems,” Physics Letters A, 155, pp. 223-224, 1991.

1.D. Eshelby, “The Force on an Elastic Singularity,” Philosophical Transacuons
Royal Sociery, A 244, pp. 87-112, 1951.

J.L. Sanders, “On the Griffith-Irwin Fracture Theory,” J. Applied Mechanics, 27,
pp. 325-333, 1960.

J.R. Rice, “A Path- Indcpcndent Integral and the Approximate Analysxs of Strain

anccntrauons by Notches and Cracks,” J. Applied Mechanics, 35, pp. 379-386,
1968

W. Giinther, “Uber einige Randimegrale der Elastomechnik,” Abhandlungen der
Braunschweigischen Wissenschaftlichen Gesellschaft, X1V, Verlag Friedr.
Vieweg & Sohn, Braunschweig, PP- 53-72, 1962.

J.K. Knowles and E. Stemberg, “On a Class of Conservatxon Laws in Linearized
and Finite Elastostatics,” Archives for Rational Mechanics and Analysis, 44 :
Springer-Verlag, Germany, pp. 187-211, 1972, :

" Yamanouchi er al., ed., Proceedings of the First International Symposzum of

Functionally Gradient Matenals, Sendai, Japan, 1990.

E. Bessel-Hagen, “Uber die Erhaltungssitze der Electrodynamik”, Math Ann. 84,
pp. 258-276, 1921.




Ml)

M2)
M3)

M4)

- MS)

M6)

List of Manuscripts Prepared during the Reporting Period

T. Honein and G. Herrmann, Conservanon Laws (and Path-Independent Imcgrals)
in Non-Homogeneous Plaxn Elastostatics.

T. Honein and G. ch'mann, Conservation Laws for Non-Homogeneous Bars.

N. Chien, T. Honein, and G. Herrmann, Conservation Laws for Non-
Homogeneous Bernoulli-Euler Beams.

Chien, T. Honein, and G. Herrn.inn, Conservation Laws for Non-
Homogeneous Mindlin Plates.

N. Chien, T. Honein, and G. Herrmann, Conservatlon Laws for Linear
Viscoelasticity.

N. Chien, T. Honein, and G. Herrmann, Dissipative Systems, Conservation Laws
and Symmetries.

-15-




. ' C Appendix

\olun.u‘. 155, number 4.5 PHYSICSLETTERS A : 13 May 1991

On conservation laws for dissipative systems

T. Honein. N. Chien and G. Herrmann
Diviston of Applied Mechames, Stantord Universirv, Stantord, ¢4 943054040, US 1

Received 2 Januan 1991; accepted tor publication 12 March 1991
Communicated by J.P. Vigier

In this brief note. a new methodology 1s advanced with the aim of establishine conservation laws for dissipative systems de-
scribed by partial differential equations. This methodology extends Noether's co.ebrated first theorem. which is applicable only -
to systems governed by equations derivable vanationally trom a Lagrangian. Several simple, vet non-trivial. examples serve to

illustrate the proposed procedure.

The purpose of this brief note is to advance and
illustrate a procedure for constructing conservation
laws (i.c.. divergence-frce expressions) for dissipa-
tive systems described by partial differential equa-
tions. Such expressions are most useful for a variety
of reasons. Whereas for non-dissipative systems.
which arise from a variational principle. Noether's
first theorem [1] is available 1o establish conser-
vation laws in a systematic fashion (cf. a very com-
plete presentation and discussion by Olver {2}). no
corresponding methodology was known and ex-
ploited for dissipative systems. since these might not
be related to a variational principle and thus Noeth-
er's procedure becomes inapplicable.

To keep this note short, reference again has to be
made to ref. [2] for all details.

In a non-dissipative system. let L be a Lagrangian
and E(L)=0 the associated Euler-Lagrange differ-
ential equation. Based on Noether's theorem it can
be shown that if one finds a “characteristic” Q of a
conservation law (having made use of the underly-
ing symmetry ). then the associated conservation law
may be expressed as

DivP=P,=QE(L)=0.

where P (i=1. 2. ... n) is an n-tuple of functions
determined by Q. n is the number of independent
variables and the subscript indicates total
differentiation.

Now let a dissipative system be given by the par-
tial differential equation

A(uy=0.

where u is the dependent variable. .
Even though this cquation may not be derivable
from a variational principle. still we set

Ja(u)y="r.

but now f'is considered not to be pre-determined as
Q was. but has to be found from the above equation.
We note that since fA (u) is required 1o be diver-
gence-tree. it has to be a null-Lagrangian. and this is
the condition which determines /. Thus we set

Z=falu)

and require 8 ¥ =0 identically in « in order to find

A

The generalization of the foregoing procedure to
a svstem of partial differential equations is
straiyatforward.

As a first illustration consider the diffusion
equation

A=, —au,,=0.

The condition § #'=0 leads to

fital, =0,

which is. in this instance. the adjoint equation. The
associated conservation law is given by

0375-9601/91/$ 03.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland) . 223
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P =a(fiu-tu). P=fu.

As a second illustration consider the nonlincar
wave equation

Atwy=u, —uu, =0,

The condition 8 =0 leads here 1o
f—ul,=0
and to a class of conservation laws with

’ “no: “;m-l
P‘=—C(! — + X .
n+12 n+1i

- ottt
pec(i o),
n+l n
where » is any real number except =2, - 1. 0, and
C is an arbitrary constant.
Lastly. consider linear viscoelasticity in the form
Au)=Yu, +nu,,=0.
Here Y is Young's modulus. # the viscosity of a Voigt
element. The stress o is related to the displacement
u by
o=Yu, +nu,,.
One possible conservation law may be obtained as
P'=g(a).
. . Pl==g J g dv=—-g (Y, +nu,).
where g(a) is arbitrary.
If we choose g(g)=a3/2Y, with
Pi+Pi=0
|
224
- ) .
-

PHYSICS LETTERS A

13 May 1991

and with

‘= Ye.

we ma)'. obtain
de
&oT =Gé—né° .

which has an immediate physical ihlcrprctaiion and
is a usetul result.

It i1s quite remarkable that the methodology ad-
vanced in this note has not been exploited earlier.
Indeed. the tools to establish our procedure are all
available (cf. ref. [2]. proposition 5.33) *' but they
have been used to construct a machinery whose pur-
pose is different from the one herein presented.

It is seen that the procedure to construct conser-
vation laws advanced here. has led to novel results.
Further aspects of the methodology presented here
will be discussed in forthcoming papers.

This work was performed with the support of the
AF Office of Scientific Research and the U.S. De-
partment of Energy. This support is gratefully ac-
knowledged. The authors would like also to thank
Professor P. Olver for many valuable discussions.

*! It is relevant to note here that we became aware of proposition
5.33 after our work was completed.
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Conservation laws for linear viscoelasticity

By N. Chien, T. Honein, and G. Herrmann, Division of Applied Mechanics,
Stanford University, Stanford, CA 94305-4040, USA

1. Introduction

~ Since the introduction of the J, L, and M iotegrals in fracture mechan-
ics, the importance of path-independent integrals has been widely recog-
nized. These path-independent integrals are conservation laws of a
divergence-free form in material space. Classically, conservation laws are
obtainable through Noether's first theorem [2], with extension of Bessel-
Hagen {1]. However, Noether’s approach presupposes the existence of a
Lagrangian function for the mechanical systems considered, and since

systems with damping and varicus other dissipative mechanisms do not -

possess Lagrangian functions, Noether's theorsm cannot be applied to

dissipative systems. entivied .
In a recent brief note “On Conservation Laws for stsxpat.we

Systems™ [4], a new approach for constructing conservation laws was

" proposed. Given a system governed by a set of differential equations, the .
proposed procedure, termed tth-‘-‘Nea&;aJ—Ae&ea—(—NA-)—Meehedl‘} in 5],

allows one to systematically construct the divergence-free quantities applica-

ble to the system considered.
It is the purpose of this present contribution to derive conservation laws

. valid for one- and two-dimensional linear viscoelasticity (Voigt model)

using the proposed method. The results presented are not exhaustive, but as
a limited. set, these laws should prove useful in the analysis of defects and
fracture in linear viscoelastic material,

" N@utred Qc.‘ﬂ on

2, ne@(NA) method

Given any system with m independent variables x/ (i=1,2,...,m), n
dependent variables u* (k=1,2,...,n), the governing equations can be
represented by

M(x', u*, uf) =0. (1
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Using the multi-index notation introduced by Olver [3], u% in
(1) represents all possible pth order partial derivatives of u*

’
Gru*
axll ax ... axlp ’

uj
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equation

with J=(jisJa»--.,j,) as an unordered p-tuple of integers, 1< s Sm
indicating which derivatives are being taken, and # J = p!indication} how

many derivatives are being taken.

e 3 H
ind \cg’\'%%_

For any system governed by a sst of differential equations as in equation

(1), the ['Neutral Action (NA) Method'?j_ﬁoposed in [4] states

possible to construct conservation laws valid for the system in the form of

£38% chane Vo)

cheannt 32

.f\. . -
£33 £%( xi, 0%, 0F)

laws, and E* is the Euler operator defined as

BN =(-D), L o< ars),
. T Guk
with

DJEDI‘D/z"’DI )

(4

representing all possible pth order total derivatives, and
(=D),=D, for #J=even,

that it 15 Neotral Ackien

(2)

(3)

Here | /' = f'(x’, u* u*)| are the unknown characteristics of coaservation

(4

&
=D),= =D, for #J=odd.
&Aigxl_)_p_p.pgr cepeated dummy indicrs indicete fommection
Since our objective is to construct some divergence-free expressions out
oflf*AJ, and since the Euler operator acting on any total divergence always

n(3)isa

requirement for exist&nce of conservation laws. Equation (3) also implies

gives a null result by,.calculus of variation, it follows that equatio
g‘a\

that[/'A}is a null Lagkangian whose action integral,
he, '

has vanishing variation for any dependent variables u",EA —a

(3)

i.2. SA=0

= 0§/ In other

words, in order to construct conservation laws for any system (dissipative

or Lagrangian) governéd by a set of differential equations|a’ = 0lb
method, we try to construct a product of{f'Afwhose action inteera

y the NA ,‘A‘\eo,.
[doesaor— (3 i,

change variationally. Hence the name [“Neutral Action Method’}
this procedure. o

« Nestra |\ A("r;oo\ﬂ ™
ke
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In practice, given any set of differential equations, one only needs to

~ solve equation (3) for the unknown characteristics /} and then proceed to

construct the conserved currents P’ valid for the systém governed by this set
of differential equations. 5
£

3. One dimensional linear viscoe!nsticitj'

Conservation laws derived for 1-D linear viscoelasticity were given as an

- example in the brief note “On Conservation Laws for Dissipative Systems”

[4] to illustrate the construction of conservation laws via the NA method.
For completeness of the present paper, these results will be presented again

“in this section with some additional details.

The governing equation for 1-D linear vxscoelasucnv (Voxgt model) is

8= Y b =0 6E - o= 6

oung’s modulus, q’:thc viscosity cdefficient of a Voigt
element, . and rdthe spatial coordinate and time, and wjthe displacement for
the system. SuBséripts [in—thi indicate differentiation.

The stress ¢ of this sysu(m is related to Gc displacement u by

o= Yu +yu. | e pectio! 0]
If oncthe variables in this system such that

* . .
b=Yurny, | ®

the governing equation of 1-D linear viscoelasticity can be written as

A=¢, =0 9)

- Assuming the characteristic of conservation laws for the system to be

f=fbe . | 0

the condition for existence of conservation laws, equanon (3) by the NA

method will require that

oo )-o(for) i
35 4 (a¢. ¢,,) .<a¢'¢,,)+ox,<f) 0.

Since the only unknown in the above equation is the characteristic f
which depends on ¢, ¢,, and ¢,, it follows that all coeﬁ‘icientslof second and

E(f8) =

ckengg_
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higher order derivatives of ¢ in this equation must be set equal to zero
independently. The resulting set of equations is as follows:

coefficient | equation

¢xx ¢Il

: |97
x 6¢;.’

5
b+ 5500,

S __&f

P 1236 " G050,

¢ =0

remaining

(12)

After some mathematical manipulatiors, the solution of the above set of
equations is found to be

f=TBB+ L) + o932 (13)

Since f* and f? are arbitrary functions of ¢,, it is permissible to rename
them as

f'(¢x) = —g'(¢x)v
FHe<) = h(9,),

with ( )’ denoting differentiation with respect to the argument. Defining f!
and f* as such will allow the conservation laws derived to have a simpler
appearance.

(14)

With

S==8"(8.)¢, + h'(¢.) + Coo 7, (15)
and

A=¢,., (16)

it is possible to construct divergence-free expressions, D, P* + D,P* =0, out

. of the product of f and A. The resulting conservation law is

Pr= ~g’(¢x)¢l + h(¢x) - C(éb- - X) ,

* 17
P'=g(¢,). (n
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Since the stress, o = ., of this system is constant with respect to x, the
conservation law pertaining to only A(¢,) #0,
P*=h(¢,) = A (1) _ (13)

implies that any function of the constant stress is a constant with respect to
x, where 4,(¢) is an_arbitrary function of time. '
wWith ¢ = ¢, =, the conservation law corresponding to C # 0 can

be cewritten as tonstant ' : : ealy
Pr=¢ —x¢p, =4, (1), ' (19)

where A,(¢) is an arbitrary function in r. In terms of stress and diSplaccmént,
P* = Yu + nqu, — xo = A;(t). : o (20)

This law expresses a relation between stress, displacement and (strain-rate]
which can be obtained by integrating the constitutive equation of the system
while taking intd account the equilibrium equation.

~ In terms of stress, the divergence-free expression that pertains to ooly
g(¢.) # 0 can be writtten as '

Pr=—g'(0) [6, dx,

: iy 2
P’ = g(o), _ (zn

where g is any function of stress.
If one chooses g(o) =0?/2Y, and [denotin

de'\o'ﬁ'_e__é’
the elastic component of

stre ¢=[Fu)} and the strain rate\given by) ¢, = u,,, this particular
conservation law can_be.written as as '
acz . "\"hi/\ =
Dl(ﬁ) =0¢, _"53» (22)

whose physical interpretation is that the dissipation of elastic energy
(6}/2Y) is equal to the rate of work done due to tractions (g¢,) minus the,

~ energy dissipation (ne?).

Additional conservation laws for 1-D-linear viscoelasticity can be ob-
tained by assuming different dependence of stress in the fuaction g(o).

.4, Two dimensional linear viscoélasticity

Denoting the normal stresses in the x and y direction as o** and ¢”7, the
shear stress as o®, the equilibrium condition for any 2-D continuum
mechanics problem is given by

Al'=o+0) =0,

23
M=oY +07 =0. ()

veled f;/

N |
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. . (based o~ the Voigt medel
For linear vxscoelasdcily’,"- the stress components are reizted to the

normal strains in the x and y direction (¢**, ¢”*) and the shear strain (¢**) by
v o= = (A +2p)e™ + Ae”” + (@ + 2B)e™ + ae)”,
‘3 o7 =2+ 2p)e” + L 4 (o o+ 2Pl a2, | (24)

.S
o = 2ue” + 2[e”,
) where 1 and u are the Lamé constants, « and f§ the viscosity coefficients of
_the system. _
With u and v being the displacements of the system in the x and y
. directions, the strain components are given by
s*":: u,, '
P ; =y, ‘ : (29)
. < o ‘ ‘ _
- e ] a4 =:%(uy '*-Ux)'
' ‘ Combining the above equations, the two governing equations for 2-D
linear viscoelasticity in terms of displacements are
. A'=(} +2p)u,, + pu, + (4 + po,
ﬁ
L( (8 + 28T + Bl + (& + B
- 2
A= (4 20,y + o+ (A + (26)
r / + (@ +2B)v, %y + Boen + (@ + Blugy-
v v -
Given the governing equations for the system, the condition for exis-
tence of conservation laws by the NA method, as given in equation (3), is
3 LEUa +r) =0.)— ¥ (£'2'+ 4240 = o 27
. B N W
LOns Since]A"s‘}contain third derivatives in u and v; in order to evaluate this
—_— condition{fer existence, one needs to compute the third total derivative of

= £3's  — f"s)If one assumes some characteristics that depend on x, , ¢, u, v and also
on derivatives of u and v, calculating : he third total derivatives off fsfwould
be virtually impossible in the absence of advanced computing devices with
large memory capacity. Due to this difficulty in evaluating equation (27),
the general solution for the characteristics is yet unknown. However,
particular solutions may be found heuristically.

By restricting the dependence o o x, y and ¢ only, the condition for
1 existence of conservation law by thel NA method, equation (27), requires
that 3
" 'l‘-“:+f .\l'y =9, 4 *s
/ Fia+ 3y =0, 28
!
; ey, =@
‘ Ay
426
T e - , L .

-4

NG
hal 8
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wherelC,(t)l is an arbitrary function of ¢ The corresponding conservation
law is N 4\;&) ‘

Pr=fla=+ fa® — fi[(A + 2uu + (a + 2B)u,]
~fi{uw + Bv,] — [iluv + Bu,] 4-/3(/'.:1 + 2u,)
Pr=fa® + a7 - filAv + av,] = f}{uu + Bu,) . vonc"“ﬂ"“‘
mov
—filuu + Bu) — £l(A + 2p + (2 -r/?-ﬂ;)vzll‘/)
P=0, (29)

where f' and f* are functions satisfying equation (28).

If f1, f? are taken to be constant, the above conservation law expresses
the condition of equilibrium for the system. Due to the absence of a time
current, equation (29) provides path-independent integrals in the material

é‘-‘ib spaceZiwhich might be useful in numerical analysis of cracks and defects for
o™ 4 . .
2-D Viscoelastic material. - to_the :
Conservation) law that relates¥dissipation of elastic energy for 2-D linear
¢ om“"‘:(‘oh viscoelasticity can be constructed if one(consideredja special case where the
) ' Lamé constants (4, u) and viscosity coefficients («, f) are celated by

A

[
pa = AB, Considers (30)
: -
which implies that
S =f g add ' ' 3
v 5%z . v . (31)
One solution for existence of conservation laws in this special case is
given by
fl = A[yul + ull])
(32)

2= Alw, +v.), )
oS~y and the corresponding conservation law]beinzi- rﬁds

odd "k :
o ?‘h bf“ “r( .ﬂu' + un)a" + (7”‘ + U")d‘v]

> P = Allyv, + va)o”” + (yu, + uy)o ™) g desete
P= —% (e + 2B){(yux + ux)? + (40, +v,,)°] (33)

+ Bllyuy + uy)? + (70, + 0)7)

1N
-‘,.A:":‘k " + 2510, + 0, 7ty + ) + 28070, + 0, )y + )]
©
f\‘;.’r ’Au-q“ ‘l—DZnoting the elastic energy of the system as

We=Wupsao (39)
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where W is the strain eoergy density given by
W=l \ o, ' (35

the consccvationflaws(for this special case of yx = 1B can be written as

D hd
Dt (W] =0 + 076 + 2077 —|(a + 22}5;“2 +£17%)
(¢+152

~
— ag el —4f2?

(36)

which expresses the balance between diésipation of elastic energy, rate of
work done due to tractions and the total energy dissipated for|a|special 2-D
viscoelasticity problem. T™is

The balance law for the special 2-D viscoelasticity problem where
pa = Af, equation (36), can be verified to hold also in the general case
without any restraint on the Lamé constants and viscosity coefficients. The
comservation law that would yield this result is found to be

”~
~

P* = Au,6* +v,06” + usy* +va)

P* = Alv,0” +u,0™ + vaY +uo?] e /

U

. Pi= -A[2W¢ + ((! + 25)(1‘:":1 + vy:vyl) + a(uyuxl + uxv_vl)
+ B(uyuyt T U0y + veuy, -+ uyvxl)]' :\_e:'rhcd ‘ /
Within the framework of the Neutral Actior{ Mcr.ho?, equation (37) can be

- modidie S/ obtained if one|modified| the condition for existence of conservation laq as
- == given by equation to \awog

E(/a +ga) =0l 3 G

In which case, the coxesponding characteristics are
fl=u, g'=u ES (o« alak)=z o
Si=v, gi=0. '

5. Conclusions

In this present contribution, conservation laws are presented for one-

, and two-dimensional linear viscoelasticity. These divergence-free expressions

\ are obtained using the Neutral Action (NA) [Mctﬁa \applicablc for con-
- structing conservation laws for dissipative systems [4]."—metiad

\ For 1-D linear viscoelasticity, the non-trivial conservation laws obrained

\ took a very general form. The conserved current in time can be any function

of the total stress, and the conmserved current in space is the pegative

derivative of this function times some derivative of the displacement. If one
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choosegth nknow#uncuou to be proportional to the stress squared, the re-
sulting conservationt law shows balance|ofthe dissipation of elastic energy
and the of the system. Obviously, more conservation laws can. be
piistructed by assuming diffe.ent dependences of stress in the unknown
function. '

In 2-D linear viscoelasticity, the conservation laws obtained are not as
- general as in the 1-D case. For the general and a special case of the 2-D
problem, conservation laws are constructed to show the balance between the
dissipation of energy and rate of work done parallel to the 1.D
Also, it is found that conservation laws without the conserved time current
dofexist whicH provide path-independent integrals that might be useful in
analysis ol cracks and other defects in linear viscoclastic material.

The conservation laws derived here are not exhaustive. If one allows the

rde_(‘

characteristics of conservation laws to be functions of higher®erivatives of
the dependent variables, more conservation laws can be obtained. In lack of
an advanced computing device with large memory capacity which is neces-
sary to solve for high dependence characteristics, the conservation laws
presented here are limited. However, as a limited set, these laws are
noa-trivial results for vxscoclasucxtg and they serve as examplcs on applica-

?(cb‘m

tion of the Neutral Action\Metho
_r_pa.‘\'k.é
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Abstract
e%' i : "Nestral Ackion
la the brief note “On Conservation Laws for Dissipative Systems™ M, 3 nfw fff? Ei INAY Y mets
< 'ng conservauon laws was proposed. This method was termed the{“Neutral A.tion (NA -
Mclhod" in {5). For any system governed by a set of differential equations, the NA method oflers a
tematic approach for determination of conservation laws applicable to the system. It is the purpose

of the present puper to establish conservation laws for one- and two-dimensional viscoelasticy (Voigt
model) via the NA method. The conservation laws derived shouid prove useful in studies of fracture and
deflects in a viscoelastic material.
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